Source code for geoopt.manifolds.siegel.upper_half

from typing import Optional, Tuple, Union
import torch
from geoopt import linalg as lalg
from geoopt.utils import COMPLEX_DTYPES
from .siegel import SiegelManifold
from .vvd_metrics import SiegelMetricType
from ..siegel import csym_math as sm

__all__ = ["UpperHalf"]


[docs]class UpperHalf(SiegelManifold): r""" Upper Half Space Manifold. This model generalizes the upper half plane model of the hyperbolic plane. Points in the space are complex symmetric matrices. .. math:: \mathcal{S}_n = \{Z = X + iY \in \operatorname{Sym}(n, \mathbb{C}) | Y >> 0 \}. Parameters ---------- metric: SiegelMetricType one of Riemannian, Finsler One, Finsler Infinity, Finsler metric of minimum entropy, or learnable weighted sum. rank: int Rank of the space. Only mandatory for "fmin" and "wsum" metrics. """ name = "Upper Half Space" def __init__( self, metric: SiegelMetricType = SiegelMetricType.RIEMANNIAN, rank: int = None ): super().__init__(metric=metric, rank=rank)
[docs] def egrad2rgrad(self, z: torch.Tensor, u: torch.Tensor) -> torch.Tensor: r""" Transform gradient computed using autodiff to the correct Riemannian gradient for the point :math:`Z`. For a function :math:`f(Z)` on :math:`\mathcal{S}_n`, the gradient is: .. math:: \operatorname{grad}_{R}(f(Z)) = Y \cdot \operatorname{grad}_E(f(Z)) \cdot Y where :math:`Y` is the imaginary part of :math:`Z`. Parameters ---------- z : torch.Tensor point on the manifold u : torch.Tensor gradient to be projected Returns ------- torch.Tensor Riemannian gradient """ real_grad, imag_grad = u.real, u.imag y = z.imag real_grad = y @ real_grad @ y imag_grad = y @ imag_grad @ y return lalg.sym( sm.to_complex(real_grad, imag_grad) ) # impose symmetry due to numerical instabilities
[docs] def projx(self, z: torch.Tensor) -> torch.Tensor: """ Project point :math:`Z` on the manifold. In this space, we need to ensure that :math:`Y = Im(Z)` is positive definite. Since the matrix Y is symmetric, it is possible to diagonalize it. For a diagonal matrix the condition is just that all diagonal entries are positive, so we clamp the values that are <= 0 in the diagonal to an epsilon, and then restore the matrix back into non-diagonal form using the base change matrix that was obtained from the diagonalization. Parameters ---------- z : torch.Tensor point on the manifold Returns ------- torch.Tensor Projected points """ z = super().projx(z) y = sm.positive_conjugate_projection(z.imag) return sm.to_complex(z.real, y)
[docs] def inner( self, z: torch.Tensor, u: torch.Tensor, v=None, *, keepdim=False ) -> torch.Tensor: r""" Inner product for tangent vectors at point :math:`Z`. The inner product at point :math:`Z = X + iY` of the vectors :math:`U, V` is: .. math:: g_{Z}(U, V) = \operatorname{Tr}[ Y^{-1} U Y^{-1} \overline{V} ] Parameters ---------- z : torch.Tensor point on the manifold u : torch.Tensor tangent vector at point :math:`z` v : torch.Tensor tangent vector at point :math:`z` keepdim : bool keep the last dim? Returns ------- torch.Tensor inner product (broadcasted) """ if v is None: v = u inv_y = sm.inverse(z.imag).type_as(z) res = inv_y @ u @ inv_y @ v.conj() return lalg.trace(res, keepdim=keepdim)
def _check_point_on_manifold(self, z: torch.Tensor, *, atol=1e-5, rtol=1e-5): if not self._check_matrices_are_symmetric(z, atol=atol, rtol=rtol): return False, "Matrices are not symmetric" # Im(Z) should be positive definite. ok = torch.all(sm.eigvalsh(z.imag) > 0) if not ok: reason = "Imaginary part of Z is not positive definite" else: reason = None return ok, reason
[docs] def random(self, *size, dtype=None, device=None, **kwargs) -> torch.Tensor: if dtype and dtype not in COMPLEX_DTYPES: raise ValueError(f"dtype must be one of {COMPLEX_DTYPES}") if dtype is None: dtype = torch.complex128 tens = 0.5 * torch.randn(*size, dtype=dtype, device=device) tens = lalg.sym(tens) tens.imag = lalg.expm(tens.imag) return tens
[docs] def origin( self, *size: Union[int, Tuple[int]], dtype=None, device=None, seed: Optional[int] = 42, ) -> torch.Tensor: """ Create points at the origin of the manifold in a deterministic way. For the Upper half model, the origin is the imaginary identity. This is, a matrix whose real part is all zeros, and the identity as the imaginary part. Parameters ---------- size : Union[int, Tuple[int]] the desired shape device : torch.device the desired device dtype : torch.dtype the desired dtype seed : Optional[int] A parameter controlling deterministic randomness for manifolds that do not provide ``.origin``, but provide ``.random``. (default: 42) Returns ------- torch.Tensor """ imag = torch.eye(*size[:-1], dtype=dtype, device=device) if imag.dtype in COMPLEX_DTYPES: imag = imag.real return torch.complex(torch.zeros_like(imag), imag)